An approximate cyclic reduction multilevel preconditioner for general sparse matrices

نویسنده

  • Arnold Reusken
چکیده

We discuss an iterative method for solving large sparse systems of equations. A hybrid method is introduced which uses ideas both from ILU preconditioning and from multigrid. The resulting preconditioning technique requires the matrix only. A multilevel structure is obtained by using maximal independent sets for graph coarsening. For Schur complement approximation on coarser graphs an incomplete Gaussian elimination is used. The resulting preconditioner has a transparant modular structure similar to the algoritmic structure of a multigrid V-cycle.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Pii: S0168-9274(99)00047-1

We investigate the use of sparse approximate inverse techniques in a multilevel block ILU preconditioner to design a robust and efficient parallelizable preconditioner for solving general sparse matrices. The resulting preconditioner retains robustness of the multilevel block ILU preconditioner (BILUM) and offers a convenient means to control the fill-in elements when large size blocks (subdoma...

متن کامل

Approximate cyclic reduction preconditioning

We discuss an iterative method for solving large sparse systems of equations. A hybrid method is introduced which uses ideas both from ILU preconditioning and from multigrid. The resulting preconditioning technique requires the matrix only. A multilevel structure is obtained by using maximal independent sets for graph coarsening. Ideas from [20], [22] are used to construct a sparse Schur comple...

متن کامل

BILUTM: A Domain-Based Multilevel Block ILUT Preconditioner for General Sparse Matrices

This paper describes a domain-based multilevel block ILU preconditioner (BILUTM) for solving general sparse linear systems. This preconditioner combines a high accuracy incomplete LU factorization with an algebraic multilevel recursive reduction. Thus, in the first level the matrix is permuted into a block form using (block) independent set ordering and an ILUT factorization for the reordered m...

متن کامل

An Algebraic Multilevel Preconditioner with Low-rank Corrections for General Sparse Symmetric Matrices

This paper describes a multilevel preconditioning technique for solving linear systems with general sparse symmetric coefficient matrices. This “multilevel Schur low rank” (MSLR) preconditioner first builds a tree structure T based on a hierarchical decomposition of the matrix and then computes an approximate inverse of the original matrix level by level. Unlike classical direct solvers, the co...

متن کامل

Multigrid Treatment and Robustness Enhancement for Factored Sparse Approximate Inverse Preconditioning

We investigate the use of sparse approximate inverse techniques (SAI) in a grid based multilevel ILU preconditioner (GILUM) to design a robust parallelizable precon-ditioner for solving general sparse matrix. Taking the advantages of grid based mul-tilevel methods, the resulting preconditioner outperforms sparse approximate inverse in robustness and eeciency. Conversely, taking the advantages o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017